
 

 

 

 

 

INTELLIGENT SYSTEMS (CSE-303-F) 
 

Section D 
 

Explanation-Based Learning (EBL) 



Explanation-Based Learning (EBL) 

One definition: 

Learning general 

problem-solving 

techniques by 

observing and 

analyzing human 

solutions to specific 

problems. 



The EBL Hypothesis 

By understanding why an example is a member of a 

concept, can learn the essential properties of the 

concept 

Trade-off 

the need to collect many examples 

for 

the ability to “explain” single examples (a 

“domain” theory) 



Learning by Generalizing Explanations 

Given 

– Goal (e.g., some predicate calculus statement) 

– Situation Description (facts) 

– Domain Theory (inference rules) 

– Operationality Criterion 

Use problem solver to justify, using the rules, the 
goal in terms of the facts. 

Generalize the justification as much as possible. 

The operationality criterion states which other terms 
can appear in the generalized result. 



Standard Approach to EBL 

goal

facts

After Learning (go directly from facts to solution):

goal

facts

An Explanation (detailed proof of goal)



Unification-Based Generalization 

• An explanation is an inter-connected collection of 

“pieces” of knowledge (inference rules, rewrite 

rules, etc.) 

• These “rules” are connected using unification, as 

in Prolog 

• The generalization task is to compute the most 

general unifier that allows the “knowledge pieces” 

to be connected together as generally as possible 



The EGGS Algorithm (Mooney, 1986) 

bindings = { } 

 

FOR EVERY equality between  

  patterns P and Q in explanation DO 

    bindings = unify(P,Q,bindings) 

 

FOR EVERY pattern P DO 

  P = substitute-in-values(P,bindings) 

 

Collect leaf nodes and the goal node 



Sample EBL Problem 

Initial Domain Theory 

knows(?x,?y) AND nice-person(?y) -> likes(?x,?y) 

animate(?z) -> knows(?z,?z) 

human(?u) -> animate(?u) 

friendly(?v) -> nice-person(?v) 

happy(?w) -> nice-person(?w) 

Specific Example 

Given human(John) AND happy(John) AND male(John), 

show that likes(John,John) 



Explanation to Solve Problem 

likes(John,John)

knows(John,John)

animate(John)

human(John)

nice-person(John)

happy(John)



Explanation Structure 
likes(John,John)

knows(?x,?y)

animate(?z)

human(?u)

nice-person(?y)

happy(?w)

likes(?x,?y)

knows(?z,?z)

animate(?u)

human(John) happy(John)

nice-person(?w)

Necessary Unifications:

All variab les must match ?z

Resulting Rule:

human(?z) AND happy(?z) ->

likes(?z,?z)



Prototypical EBL Architecture 

Problem Solver

(Understander)

Generalizer

Knowledge

Base

Explanation
New General

Concept

(Partial)

External

Solution

Specific

Goal/Problem



Imperfect Theories and EBL 

Incomplete Theory Problem 

Cannot build explanations of specific problems because of 

missing knowledge 

Intractable Theory Problem 

Have enough knowledge, but not enough computer time 

to build specific explanation 

Inconsistent Theory Problem 

Can derive inconsistent results from a theory (e.g., 

because of default rules) 



Some Complications 

Inconsistencies and Incompleteness may be due to 

abstractions and assumptions that make a theory 

tractable. 

 

Inconsistencies may arise from missing knowledge 

(incompleteness). 

e.g., making the closed-world assumption 



Issues with Imperfect Theories 

Detecting imperfections 

– “broken” explanations (missing clause) 

– contradiction detection (proving P and not P) 

– multiple explanations (but expected!) 

– resources exceeded 

Correcting imperfections 

experimentation - motivated by failure type (explanation-

based) 

make approximations/assumptions - assume something is 

true 



EBL as Operationalization 

(Speedup Learning) 

Assuming a complete problem solver and unlimited 

time, EBL already knows how to recognize all the 

concepts it will know. 

What it learns is how to make its knowledge 

operational (Mostow). 

 

Is this learning? 

Isn’t 99% of human learning of this type? 



Knowledge-Level Learning  

(Newell, Dietterich) 

Knowledge closure 

all things that can be inferred from a collection of rules 

and facts 

“Pure” EBL only learns how to solve faster, not how 

to solve problems previously insoluble. 

Inductive learners make inductive leaps and hence 

can solve more after learning. 

What about considering resource-limits (e.g., time) 

on problem solving? 



Negative Effects of Speedup Learning 

The “Utility Problem” 

Time wasted checking “promising” rules 

rules that almost match waste more time than obviously 

irrelevant ones 

General, broadly-applicable rules mask more 

efficient special cases 



Defining Utility (Minton) 

Utility = (AvgSav * ApplFreq) - AvgMatchCost 

where 

AvgSav - time saved when rule used 

ApplFreq - probability rule succeeds given its 

preconditions tested 

AvgMatchCost - cost of checking rule’s preconditions 

Rules with negative utility are discarded 

estimated on training data 



Learning for Search-Based Planners 

Two options 

1) Save composite collections of primitive operators, 

called MACROPS 

explanation turned into rule added to knowledge base 

2) Have a domain theory about your problem solver 

use explicit declarative representation 

build explanations about how problems were solved 

– which choices lead to failure, success, etc. 

– learn evaluation functions (prefer pursuing certain 

operations in certain situations) 



Reasons for Control Rules 

• Improve search efficiency (prevent going down 

“blind alleys”) 

• To improve solution quality (don’t necessarily 

want first solution found via depth-first search) 

• To lead problem solver down seemingly 

unpromising paths 

overcome default heuristics designed to keep problem 

solver from being overly combinatoric 



PRODIGY - Learning Control Knowledge 

(Minton, 1989) 

Have domain theory about specific problem 

AND another about the problem solver itself 

Choices to be made during problem solving: 

– which node in current search tree to expand 

– which sub-goal of overall goal to explore 

– relevant operator to apply 

– binding of variables to operators 

Control rules can 

– lead to the choice/rejection of a candidate 

– lead to a partial ordering of candidates (preferences) 



SOAR 

(Rosenbloom, Laird, and Newell, 1986) 

Production system that chunks productions via EBL 

 

Production system - forward chaining rule system 

for problem solving 

 

Key Idea: IMPASSES 

– occur when system cannot decide which rule to apply 

– solution to impasse generalized into new rule 



Summary of SOAR 

A “Production System” with three parts: 

• A general-purpose forward search procedure 

• A collection of operator-selection rules that help 

decide which operator to apply 

• A look-ahead search procedure invoked when at 

an impasse 

When the impasse occurs, can learn new rules to add 

to collection of operator-selection rules 



Reasoning by Analogy 

• Create a description of a situation with a known 

solution and then use that solution in structurally 

similar situations 

• Problem: a doctor can use a beam of radiation to 

destroy a cancer, but at the high amount needed, it 

will also destroy the healthy tissue in any path it 

follows 

• Idea: find a similar (some how) situation and use it 

to create a solution 



Reasoning by Analogy Story 

• Similar story: a general needs to send his troops to 

a particular city for a battle by a particular time, 

but there is no road wide enough to accommodate 

all of his troops in the time remaining (even 

though there are several roads) 

• Solution: break up the troops into smaller groups 

and send each group down a different road 

• How to solve the radiation situation?? 


