

INTELLIGENT SYSTEMS (CSE-303-F)

Section D

Explanation-Based Learning (EBL)

Explanation-Based Learning (EBL)

One definition:

Learning general

problem-solving

techniques by

observing and

analyzing human

solutions to specific

problems.

The EBL Hypothesis

By understanding why an example is a member of a

concept, can learn the essential properties of the

concept

Trade-off

the need to collect many examples

for

the ability to “explain” single examples (a

“domain” theory)

Learning by Generalizing Explanations

Given

– Goal (e.g., some predicate calculus statement)

– Situation Description (facts)

– Domain Theory (inference rules)

– Operationality Criterion

Use problem solver to justify, using the rules, the
goal in terms of the facts.

Generalize the justification as much as possible.

The operationality criterion states which other terms
can appear in the generalized result.

Standard Approach to EBL

goal

facts

After Learning (go directly from facts to solution):

goal

facts

An Explanation (detailed proof of goal)

Unification-Based Generalization

• An explanation is an inter-connected collection of

“pieces” of knowledge (inference rules, rewrite

rules, etc.)

• These “rules” are connected using unification, as

in Prolog

• The generalization task is to compute the most

general unifier that allows the “knowledge pieces”

to be connected together as generally as possible

The EGGS Algorithm (Mooney, 1986)

bindings = { }

FOR EVERY equality between

 patterns P and Q in explanation DO

 bindings = unify(P,Q,bindings)

FOR EVERY pattern P DO

 P = substitute-in-values(P,bindings)

Collect leaf nodes and the goal node

Sample EBL Problem

Initial Domain Theory

knows(?x,?y) AND nice-person(?y) -> likes(?x,?y)

animate(?z) -> knows(?z,?z)

human(?u) -> animate(?u)

friendly(?v) -> nice-person(?v)

happy(?w) -> nice-person(?w)

Specific Example

Given human(John) AND happy(John) AND male(John),

show that likes(John,John)

Explanation to Solve Problem

likes(John,John)

knows(John,John)

animate(John)

human(John)

nice-person(John)

happy(John)

Explanation Structure
likes(John,John)

knows(?x,?y)

animate(?z)

human(?u)

nice-person(?y)

happy(?w)

likes(?x,?y)

knows(?z,?z)

animate(?u)

human(John) happy(John)

nice-person(?w)

Necessary Unifications:

All variab les must match ?z

Resulting Rule:

human(?z) AND happy(?z) ->

likes(?z,?z)

Prototypical EBL Architecture

Problem Solver

(Understander)

Generalizer

Knowledge

Base

Explanation
New General

Concept

(Partial)

External

Solution

Specific

Goal/Problem

Imperfect Theories and EBL

Incomplete Theory Problem

Cannot build explanations of specific problems because of

missing knowledge

Intractable Theory Problem

Have enough knowledge, but not enough computer time

to build specific explanation

Inconsistent Theory Problem

Can derive inconsistent results from a theory (e.g.,

because of default rules)

Some Complications

Inconsistencies and Incompleteness may be due to

abstractions and assumptions that make a theory

tractable.

Inconsistencies may arise from missing knowledge

(incompleteness).

e.g., making the closed-world assumption

Issues with Imperfect Theories

Detecting imperfections

– “broken” explanations (missing clause)

– contradiction detection (proving P and not P)

– multiple explanations (but expected!)

– resources exceeded

Correcting imperfections

experimentation - motivated by failure type (explanation-

based)

make approximations/assumptions - assume something is

true

EBL as Operationalization

(Speedup Learning)

Assuming a complete problem solver and unlimited

time, EBL already knows how to recognize all the

concepts it will know.

What it learns is how to make its knowledge

operational (Mostow).

Is this learning?

Isn’t 99% of human learning of this type?

Knowledge-Level Learning

(Newell, Dietterich)

Knowledge closure

all things that can be inferred from a collection of rules

and facts

“Pure” EBL only learns how to solve faster, not how

to solve problems previously insoluble.

Inductive learners make inductive leaps and hence

can solve more after learning.

What about considering resource-limits (e.g., time)

on problem solving?

Negative Effects of Speedup Learning

The “Utility Problem”

Time wasted checking “promising” rules

rules that almost match waste more time than obviously

irrelevant ones

General, broadly-applicable rules mask more

efficient special cases

Defining Utility (Minton)

Utility = (AvgSav * ApplFreq) - AvgMatchCost

where

AvgSav - time saved when rule used

ApplFreq - probability rule succeeds given its

preconditions tested

AvgMatchCost - cost of checking rule’s preconditions

Rules with negative utility are discarded

estimated on training data

Learning for Search-Based Planners

Two options

1) Save composite collections of primitive operators,

called MACROPS

explanation turned into rule added to knowledge base

2) Have a domain theory about your problem solver

use explicit declarative representation

build explanations about how problems were solved

– which choices lead to failure, success, etc.

– learn evaluation functions (prefer pursuing certain

operations in certain situations)

Reasons for Control Rules

• Improve search efficiency (prevent going down

“blind alleys”)

• To improve solution quality (don’t necessarily

want first solution found via depth-first search)

• To lead problem solver down seemingly

unpromising paths

overcome default heuristics designed to keep problem

solver from being overly combinatoric

PRODIGY - Learning Control Knowledge

(Minton, 1989)

Have domain theory about specific problem

AND another about the problem solver itself

Choices to be made during problem solving:

– which node in current search tree to expand

– which sub-goal of overall goal to explore

– relevant operator to apply

– binding of variables to operators

Control rules can

– lead to the choice/rejection of a candidate

– lead to a partial ordering of candidates (preferences)

SOAR

(Rosenbloom, Laird, and Newell, 1986)

Production system that chunks productions via EBL

Production system - forward chaining rule system

for problem solving

Key Idea: IMPASSES

– occur when system cannot decide which rule to apply

– solution to impasse generalized into new rule

Summary of SOAR

A “Production System” with three parts:

• A general-purpose forward search procedure

• A collection of operator-selection rules that help

decide which operator to apply

• A look-ahead search procedure invoked when at

an impasse

When the impasse occurs, can learn new rules to add

to collection of operator-selection rules

Reasoning by Analogy

• Create a description of a situation with a known

solution and then use that solution in structurally

similar situations

• Problem: a doctor can use a beam of radiation to

destroy a cancer, but at the high amount needed, it

will also destroy the healthy tissue in any path it

follows

• Idea: find a similar (some how) situation and use it

to create a solution

Reasoning by Analogy Story

• Similar story: a general needs to send his troops to

a particular city for a battle by a particular time,

but there is no road wide enough to accommodate

all of his troops in the time remaining (even

though there are several roads)

• Solution: break up the troops into smaller groups

and send each group down a different road

• How to solve the radiation situation??

